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ABSTRACT 
 

 

Advisor: Steve Greenbaum 

 
 As our daily use of electronics and electronic technology grows, so does the societal need 

for sustainable, renewable and portable electrical power. To this end, materials of interest in the 

electrochemical world are needed to advance the frontier of battery science and energy storage 

technologies so that a safer, more efficient and reliable electrical future can be realized. This work 

focuses on characterization of materials primarily of interest for use as electrolytes in 

rechargeable Lithium-Ion Batteries (LIBs). Despite their extraordinary power, LIB application in 

certain fields, such as in electric vehicles, has been limited due to performance and safety 

concerns. It is to overcome this barrier that the efforts of characterization studies such as this are 

needed, so that the next generation of batteries can perform reliably and safely in all applications. 

In this work the dynamics of a novel solid polymer electrolyte are discussed, and their disruptive 

implications on the battery industry. A system of Ionic Liquids (ILs) which are candidate 

electrolyte solvents are examined using Fast Field Cycling (FFC) NMR. A deep eutectic solvent 

system of glycerol-d8 and a polar salt Choline Chloride is probed using High Pressure Nuclear 

Magnetic Resonance (HP-NMR) studies.  
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Chapter 1: Batteries and Constituent Components 
 

 

1.1  Introduction to Energy Storage 
 

 Electrical storage devices take the form of batteries, capacitors and inductors, as well as a 

few more exotic devices. Capacitors and Inductors store electrical energy in the form of electric 

and magnetic fields, respectively. Unlike capacitors and inductors, which tend to not retain 

energy storage over long lifetimes, batteries by design store energy in the form of 

electrochemical reactions that can be triggered at any time after being stored. These reactions are 

known as a redox reaction, whereby electrons are oxidized from a chemical species in the battery 

at the cathode, vindicating them to travel through a circuit and do work which provides electrical 

power, while the oxidized molecule moves in the opposite direction through the battery and is 

reduced at the anode. Batteries that are not capable of the reverse chemical reaction (e.g. 

common chemistry such as zinc-carbon) are called primary batteries, and are not rechargeable. 

Battery chemistries that do allow for the reverse reaction, and therefore recharging, are called 

secondary batteries (such as lithium-ion and their poor-performing cousin Nickel-Cadmium), and 

now dominate the majority of common electrical applications [1].  

 Demands of the electrical application in question determine the type of battery used in a 

device. Battery chemistries differ in voltage, discharge rate, internal resistance, and cycle 

performance. This work will focus on materials for use in secondary batteries, or those that are 

rechargeable. A battery consists of several simple idealized components: an anode; or negatively 

charged electrode where oxidation occurs, a cathode; a positively charged electrode where 

reduction occurs, an electrolyte; where a charge-carrying salt is dissolved to give the oxidized 
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species and free electrons, and typically a porous separator; that keeps the space in between 

electrodes physically filled for the liquid solvent and salt to move in, as well as restrict the flow 

of electrons (non-electrically conductive). Figure 1. depicts conventional battery chemistry, here 

representing a common lithium ion battery system.  

 Battery performance is of the utmost concern in applications, and several considerations 

are needed. Aside from the technical specifications of a battery (voltage, internal resistance), 

cycle performance dictates how the battery will retain charge over a lifetime of charging and 

discharging. Common rechargeable batteries are typically manufactured for performance over 

200-1000 cycles, after which irreversible chemical reactions that can occur at the electrodes 

degrade performance or prevent effective charge moving in the battery [1]. These performance 

lifetime considerations are an important factor in determining cathode and anode materials in a 

battery, as well as the interface properties between the cathode and electrolyte material [2]. 

 

1.2  Structure of Lithium Ion Secondary Batteries 
 

 As mentioned in the prior section, lithium ion batteries are a secondary battery type, and 

consist of the same internal components discussed in that section. Common cathode materials 

industrially are Manganese Oxide (MnO2), Manganese-Cobalt Oxide (MnCoO2) or other 

transition-oxide compounds of interest [1].  Anodes are typically composed of graphite, and 

electrolyte chemistries can vary greatly between specific batteries. Common lithium salts include 

Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), Lithium hexafluorophosphate (LiPF6). 

The choice of each of these materials can greatly affect the performance of a lithium battery, and 
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the resultant safety as well.  

 

Figure 1. A schematic representation of a lithium ion secondary battery with simplified components. 

 The main concern that keeps lithium ion batteries away from use in large-scale electrical 

applications is that of safety. Commonly available lithium ion batteries typically are constructed 

with a flammable organic solvent, which can undergo thermal runaway should the battery be 

overcharged, shorted electrically, or physically damaged [1,2,3]. Yet their high energy density, 

long cycle life and energy efficiency as well as sustainability in comparison with other battery 

types have retained their favor in industry [3]. Despite this, applications in electric vehicles, 

planes or large-scale electric grid storage applications are usually heavily restricted because of 
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safety concerns. To change this, novel and unique materials must be introduced to batteries that 

can address these concerns.   

 Bringing lithium ion technology into widespread use in all applications safely is one of 

the objectives of research in battery science in the present [3]. These efforts mainly focus on one 

of several issues. The first, and foremost in this work, is to characterize and understand safe 

electrolyte materials in order to be comparable to those that are volatile in terms of specific 

capacity and conductivity. The second is to improve interfaces with the electrodes in order to 

avert problems such as dendrite formation, whereby lithium metal grows at the anode and shorts 

the battery if left unchecked. This body of research is explored in depth in many publications, 

with varying chemistries and mechanisms considered [4,5]. It is through the understanding of 

these systems and their underlying fundamental behavior that we can address the sources of 

failure in application. Through the mechanistic study of novel materials for these applications, 

we can gain insight into what would make a lithium ion battery safer and more reliable.  

 

Chapter 2: Nuclear Magnetic Resonance 
 

 

2.1 The Formalism of NMR 
  

 Nuclear Magnetic Resonance (NMR) is a technique that can be understood as the 

exploitation of a fundamental property of the nuclei that constitute atoms in nature. The Stern-

Gerlach experiments at the beginning of the 20th century hinted at a fundamental property of 

nuclei that had not been previously described, that would account for phenomenological 

behavior in the presence of magnetic fields. In 1938, Isidor Rabi demonstrated the first instances 
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of a nuclei resonating in an external magnetic field [6]. NMR has since become a scientific 

mainstay technique for characterizing the magnetic and electrical properties of matter on a 

molecular level, allowing insight into dynamics of nuclei in bulk systems. Furthermore, due to 

the fundamental nature of nuclei, as detailed below, NMR is nuclei selective, allowing for the 

direct probing of systems at specific chemical sites, as well as particular species in multi-

component systems. 

 The formalism of Quantum Mechanics tells us that the intrinsic property of a nuclei 

known as spin is discretized in a basis analogous to those of angular momentum. The quantum 

numbers in this basis obey similar quantization conditions as those of a total angular momentum, 

namely that the Spin (I) number can be non-negative half integers or integers (in units of ħ). The 

projection of spin along an arbitrary axis taken to be in the 𝑧̂ direction is therefore restricted to 

have values (in the correct units) of Iz = mħ, where m = –I, -I+1,..0,...I-1,I (a total of 2I+1 

values) and ħ is the reduced Planck constant. For typical nuclei, such as in hydrogen (1H) or 

fluorine (19F), I = 1 2⁄ . Nuclei such as in atomic Lithium (7Li) have higher order spins I = 3 2⁄ . 

Nuclei possessing nonzero spins have a magnetic moment, and are called “NMR active” because 

they can interact with an external magnetic field. The magnetic moment, denoted by μ, is given 

by the expression:  

𝝁 =  𝛾𝑰    [Eq. 1] 

where γ is the gyromagnetic ratio, a constant specific to a nuclei ( in units of frequency /Tesla) , 

relating the strength of its magnetic moment to its intrinsic spin. Because spin is a vector 

quantity, the magnetic moment possesses both magnitude and direction, so considering only the 
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𝑧̂ component gives 𝝁𝒛 =  𝛾𝑰𝒛. Note that for many nuclei, with z-components of spin with m 

possible values, nuclei in a given sample can be in different spin states. While the discussion 

here will mainly consist of spin ½ nuclei, in general higher order transitions between values of m 

are possible, but are sufficiently suppressed.  

 Classical electrodynamics tells us that a magnetic moment in the presence of an external 

magnetic field experiences a net torque given by the expression: 

𝑵 = 𝝁 × 𝐁𝟎
⃗⃗ ⃗⃗   [Eq. 2] 

where 𝐁𝟎
⃗⃗ ⃗⃗   is the external magnetic field (N is used here as torque to avoid confusion with the 

time variable τ) [7]. This same principal applies to the magnetic moments generated by nonzero 

nuclear spins. Therefore, in the laboratory frame, or inertial relative to the spin precession, the 

nucleus experiences a torque in an external magnetic field resulting in an angular precession 

about the magnetic field. This torque rotates the total spin around the axis of 𝐁𝟎
⃗⃗ ⃗⃗   in a direction 

normal to the projection of the spin and to the magnetic field (clockwise or counterclockwise 

depending on the sign of 𝛾). This rotation occurs at the Larmor frequency according to the 

relation [7]:  

𝝎𝟎 =  𝛾𝐁𝟎 [Eq. 3] 

We choose in the laboratory once again to place the magnetic field along the 𝑧̂ direction for 

simplicity. With this coordinate system, a visual representation of this precession is given by 

Figure 2.The energetic description of this rotation gives that the total energy of this precession is 

given by: 

 𝑬 = −𝝁 ∙  𝐁𝟎
⃗⃗ ⃗⃗  = −𝛾𝑰𝒛𝐁𝟎 = −𝛾𝒎ℏ𝐁𝟎 [Eq. 4] 
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known as the Zeeman energy. For two adjacent states, with m values separated by Δm=1, the 

energy difference is also separated by an amount quantized by: 

𝚫𝑬 =  𝛾ℏ𝐁𝟎       [Eq. 5] 

 

From the Planck-Einstein relation 𝑬 = 𝜔ℏ, one arrives at the frequency of a photon that has an 

energy equivalent to this separation in Zeeman energies: 

𝝎 =  𝛾𝐁𝟎 [Eq. 6] 

 

We can see from comparison of Eq. 6 and Eq. 3 that the Larmor frequency of precession of the 

magnetic moment in the external magnetic field is the same as the frequency of a photon needed 

to excite a transition between adjacent values of m. Note that because m was discretized into 

2I+1 possible values, there are an equivalent number of possible Zeeman energy levels. 

Therefore it is possible to excite transitions between Zeeman energy levels with the absorption of 

a photon of the Larmor frequency. For almost all active nuclei at fields of several Tesla 

magnitudes, this frequency is typically in the Radio Frequency (RF) region.  

Figure 2. A visual representation of Larmor precession of a magnetic moment about an external field. 



www.manaraa.com

Nuclear Magnetic Resonance Characterization of Dynamics in Novel Electrochemical Materials 

 

 

 8 

2.2 Experimental NMR Details 
 

 From an experimental point of view, the formalism presented in the previous section 

allows for the excitation of nuclei in an external magnetic field using radio frequency radiation. 

The details of delivering this radiation will be discussed further, but first a note on the 

practicality of experimental NMR. We see in Eq. 5 and Eq. 6 that Zeeman energy spitting, and 

therefore needed frequency of radiation to excite transitions is dependent on the strength of the 

external field. In practicality, these fields could be any nonzero value, however magnetic fields 

are used of order several Tesla, so that radio frequencies are the primary frequency ranges for the 

precession. This is chosen partially to maximize the energy difference such that higher resolution 

in the resultant signal, as will be discussed in a further section, can be acquired. It also coincides 

with well-established electronics that operate on the necessary frequency scales.   

 After establishing the precession of the spins of nuclei in a magnetic field, the question of 

delivering energy in the form of electromagnetic radiation in order to excite transitions becomes 

pertinent. First, we must discuss the populations of species available to be excited. In bulk 

samples, Avogadro’s number of active nuclei may be present and contribute magnetic moments 

to bulk magnetization. These magnetic moments as we have seen, have several possible states in 

the presence of an external field. For a simple nuclei of I = 1 2⁄  only values of m =±1
2⁄  are 

possible. Therefore the 𝑧̂-projection of the nuclear spin can be aligned with the magnetic field, or 

anti-aligned. The anti-aligned state is energetically less probable, because it is a higher energy 

(the minus sign contributes to the energy of a given state in Eq. 4) state and at thermal 

equilibrium has a lower probability. Therefore there will be some population in either state, 
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which can reasonably at room temperature be represented by Boltzmann statistics for both 

populations. We have therefore the expression: 

𝑵𝒂

𝑵𝒃
= 𝑒−Δ𝐸/𝑘𝑏𝑇         [Eq. 7] 

where population 𝑁𝑎 describes anti-aligned states and 𝑁𝑏 aligned states, kb the Boltzmann 

constant, and T temperature in Kelvin. This population expression at room temperature and for 

Zeeman energy splitting at fields of order 1Tesla is in favor of the aligned states only by a small 

amount, hence the important need of high magnetic field strengths. The available difference in 

the aligned spins with the anti-aligned spins is what results in the net magnetization, and 

therefore a higher population splitting is favorable for higher intensity signal.  

 To effectively deliver the needed radiation to excite the transitions of nuclei, one can 

think of a vectorial picture where we examine the bulk magnetization as a vector quantity 

representing the net magnetic moments that are aligned with the external field. This 

magnetization, M0 is rotated away from the axis of the field into an orthogonal plane by the 

application of a second magnetic field, B1 in a direction we can arbitrarily call the 𝑥̂ axis. The 

result of which is more intuitive in the rotating frame whereby we observe the magnetic 

moments of the nuclei in a frame rotating at the Larmor frequency. Effectively, the 

magnetization in the rotating frame only sees the applied orthogonal magnetic field, when B1 is 

applied at the resonance condition, namely that it is rotating at frequency ω, the Larmor 

frequency in the lab frame. This results in the magnetic moments beginning to precess about the 

applied field, and the magnetization rotating to align with that field in the rotating frame. The 

derivation of the resonance condition in the governing differential equations is not reproduced 
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here, but can be found in entirety in the reference literature, much more elegantly than this author 

can reproduce [8].  

 What must be clear, however, is that the applied magnetic field B1 must be rotating at the 

Larmor frequency in the stationary reference frame. In practice, this is achieved by creating a 

linear-polarized magnetic field pulse in a solenoid type inductor, where the magnetic field 

oscillates at the desired frequency. The sample is placed in the axis of the solenoid where the 

magnetic field is most homogenous. A linearly polarized magnetic field may be written as the 

Figure 3. Magnetization evolution with applied orthogonal magnetic field. 
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sum of two circular polarized magnetic fields, and in the rotating frame, the component that has 

an opposite rotation to that of the Larmor Precession has negligible effects [8]. Figure 3. details 

the rotation of the bulk magnetization vector M0 away from the principal axis, as a function of an 

applied field. The functional dependence of the tipping angle at the resonance condition of the 

Larmor frequency are represented by the Bloch equation in three dimensions, giving the 

precession about B1 not derived here but once again referred to the reference literature [9]. The 

result of the Bloch equation when a finite time of applying a constant B1 is considered gives the 

tipping angle: 

𝜽 =  𝛾𝜏𝐁𝟏= τω1             [Eq. 9] 

where τ is the length in time of the applied pulse and ω1 the effective frequency of the applied 

field.  A pulse that provides 𝜽= π/2 is referred to as a 90° pulse, and effectively places the 

magnetization into rotation in the transverse plane, orthogonal to B0.  

 NMR experiments employ the same coil used to deliver the RF excitation for acquisition 

[8].  The evolution of the magnetization after being moved away from the static field is governed 

by the Bloch equations in the lab frame; the solutions of which are reproduced here [9]: 

𝐌𝐳 = 𝐌𝟎(𝟏 − 𝒆
−𝒕

𝑻𝟏
⁄ )                        [Eq. 10] 

𝐌𝐱 = −𝐌𝟎sin(𝝎𝟎𝒕)𝒆
−𝒕

𝑻𝟐
⁄

                       [Eq. 11] 

 𝐌𝐲 = 𝐌𝟎cos (𝝎𝟎𝒕)𝒆
−𝒕

𝑻𝟐
⁄

                                     [Eq. 12] 

These equations introduce several constants, namely T1 and T2. T1 is interchangeably referred to 

as the spin-lattice characteristic relaxation time, which governs how the magnetization returns to 

equilibrium with the static field. In subsequent sections the dynamic descriptions of T1 relaxation 
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mechanisms will be described. T2 is similarly and equivalently referred to as spin-spin relaxation 

time, where the dephasing of the orthogonal components of the magnetization in the x-y plane 

are understood to be the result of near-neighbor spin coupling. It should be noted that these are 

the analytic solutions to the Bloch equations in the case of simple relaxation modes, in practice 

T2 includes terms due to magnetic dipolar coupling and local magnetic field inhomogeneity 

(typically referred to as T2* when including these effects).  

 In the lab frame, one recognizes from Eq. 11 and Eq. 12 that we have a time varying 

magnetization in the x-y plane along the two directions. If the coil axis is chosen to be along the 

𝑥̂ direction, then we have a net magnetic field oscillating with frequency 𝛚𝟎 in the axis of the 

solenoid. By Faraday’s law of induction, we will see an induced current in the coil that can be 

received over some acquisition time that is scaled with T2. This induced current will decay in 

time, due to the exponential decay of spin-spin relaxation effects. The decay of the induced 

current is known as the Free Induction Decay (FID), as seen in Figure 4. [8].  The induction 

decay occurs simultaneously to the recovery along the 𝑧̂ axis in the governing equations, and in 

most cases T2 < T1. The resultant FID can be Fourier Transformed (FT) into frequency domain, 

where the frequency lineshape for a simple 90° pulse is a Lorentzian, centered at the Larmor 

frequency, with a Full-Width at Half Max FWHM proportionate to 1 T2 
⁄ .      

 While this description phenomenologically describes the experimental acquisition of the 

induced changes in the spin system, it does not yield descriptions of the interactions governing 

the relaxation mechanisms present for the bulk magnetization. These analytical descriptions must 

instead be found in perturbations to the spin Hamiltonian [10]. 
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2.3 Brief Comments on Relaxation Formalism 
 

 In the introduction of the characteristic relaxation times T1 and T2, I have neglected 

introducing the formalism causing these two decays. The relaxation mechanisms generally arise 

from several factors in complicated materials. At the moment of the pulse ending in the 

orthogonal plane, we are left with a magnetization, Mxy that will begin to return to the lower 

energy configuration, namely by returning to its maximum value with the external field, in the 

direction of 𝑧̂. This occurs in the time T1. At normal temperatures 
𝑘𝑇

ħ
 is very large in comparison 

to the energies of emitted photons, and so conditions for spontaneous emission of the bulk 

sample are suppressed. In this case, stimulated emission becomes the dominant relaxation 

mechanism. The phenomena behind stimulated emission in these bulk systems generally arises 

from fluctuations in the local magnetic fields and spin interactions within the immediate 

Figure 4. An idealized free induction decay, with arbitrary intensity. 
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environment of the nuclei probed. These mechanisms are dominantly dipolar-dipolar magnetic 

interactions, but can include higher order interactions as well, such as that of the quadrupole 

moment with the electric field gradient [10]. In general however, the dipole coupling arises, or is 

mediated, by the random molecular tumbling in accordance with a Brownian Diffusion process, 

as well as the intramolecular interactions between neighboring nuclei.  

 In the formalism of such relaxation mechanisms, the analytic form of the characteristic 

time over all temperatures and frequencies is generally not determined exactly. This necessitates 

experiment to probe various dynamics in these complicated systems in order to specify processes 

and their dominance in a particular material. In liquids, random diffusion behavior accounts for a 

large portion of the dipolar coupling. In crystalline and amorphous solids, the behavior can be far 

more complicated. What remains is that by probing the characteristic times T1 and T2 we are 

directly observing the averaging of these interactions over some distribution. The Bloch 

equations are therefore phenomenological in nature. They do not describe analytically the 

microscopic behavior, but rather a bulk averaged thermodynamic process, which is the resultant 

sum of quantum mechanical mechanisms. The statistical formalism behind a number of dipole 

interactions was introduced by Bloembergen, Pound and Purcell in 1948, and in subsequent 

papers has been derived for a number of specific cases [11]. The derivation of these 

mathematical descriptions is far beyond the scope of this work, and a full treatment can be found 

in the appropriate literature, however a note about the dipolar coupling is warranted [10,12].  

 The interaction between a nuclei and its surrounding magnetic environment was assumed 

ideal in the Zeeman Hamiltonian expressed above. In general, the Hamiltonian can be re-
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expressed as the sum over perturbations to this Hamiltonian, namely: 

𝐇𝟎 = 𝐇𝟎 + ∑ 𝐻𝑖𝑖                                                [Eq. 13] 

Where the Hamiltonian of two magnetic dipoles interacting through space is given by:   

 𝐇𝐝 = b𝑎𝑏[(I𝑎 ∙ 𝑒𝑎𝑏)(I𝑏 ∙ 𝑒𝑎𝑏) − I𝑎∙I𝑏]                              [Eq. 14] 

Here b𝑎𝑏 represents the dipolar coupling constant, I𝑎, I𝑏 the spin operators for spin A and spin B, 

respectively, and 𝑒𝑎𝑏 the unit vector in the direction pointing from spin A to spin B. The note to 

be made is that the dipolar coupling constant, b𝑎𝑏 ∝ 𝑟𝑎𝑏
−3 where 𝑟𝑎𝑏 is the inter-spin distance. In 

liquids, this interaction is averaged over many spins and in general is “motionally narrowed” by 

this averaging [10,12]. Since higher order interactions have increasingly negative power 

dependence on the inter-spin distance, dipolar coupling is the dominant mechanism. It is further 

proof that intramolecular dipole interactions are dominant in relaxation phenomena in 

comparison to intermolecular interactions. In solid systems, more so than liquid, the dipolar 

interaction can cause broadening of the spectral lines, namely due to the local fluctuations in 

magnetic fields that are anisotropic relative to the applied field, and so the resultant spectral 

contribution from each site is distributed. This broadening can be averaged using experimental 

techniques to reduce these effects.  

 T2 behavior can be analyzed in a method analogous to that of T1 but in general does not 

encode the same information. T2 times are more directly related to the broadening of lineshapes 

through dephasing of the magnetization in the orthogonal plane. Due to this, they are strongly 

coupled to any inhomogeneity that may be present in the external magnetic field in this plane, as 

can arise with solenoid type magnets. Furthermore, due to the reliance of the tilting into the 
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orthogonal plane on the homogeneity of the delivered RF pulse, electronic inaccuracy in the 

probe itself, either in the orientation of the RF coil relative to the external field, or in power 

supplied by the external equipment can also result in dephasing that contributes to T2. The net 

contributions, including inhomogeneity of the magnetic field intentional or otherwise are 

therefore encoded in a variable known as T2
*.  

 

2.4 Chemical Shifts 

 

A particular perturbation to the Zeeman Hamiltonian that is of the utmost importance to 

NMR spectroscopic techniques, particularly in the fields of analytical chemistry, is known as the 

chemical shift interaction. This additional element in the Hamiltonian is critical to identifying the 

chemical structures inherent to large organic and inorganic systems, and allows for the selective 

probing of particular chemical sites in subsequent dynamic studies. The details will be 

qualitatively described below, but full treatment of both chemical shift interaction and the closely 

related Chemical Shift Anisotropy (CSA) can be found in the literature [8,10,12]. 

In the acquisition of spectrum for nuclei in complex materials, multiple peaks can often 

be seen at different shifts relative to the central frequency of the spectrum. This arises from the 

effects of differing electrical environments for the same nuclei at different chemical sites in a 

molecule. The electrons present in molecules surrounding nuclei also possess spin and magnetic 

moments, and are actively interacting with the external magnetic field as well. While a formal 

treatment of the electron interaction with a magnetic field is not given here, it suffices to say that 

this interaction gives rise to an effective “shift” in the magnetic fields experienced by a particular 

nuclei in a chemical structure. This “effective” magnetic field can either be additive or opposing 
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that of the external field, and subsequently affects the frequency of the Larmor precession. As 

originally stated in Eq. 3, the Larmor frequency is particular sensitive to the magnetic field 

experienced by a spin. Accounting for the locally affected magnetic field by the presence of 

electron magnetic moments, we can rewrite Eq. 3 as: 

𝝎𝒕𝒐𝒕 =  𝛾𝐁𝟎 + 𝛾𝐁𝒆𝒇𝒇 = 𝛾𝐁𝒕𝒐𝒕 = 𝝎𝟎 + 𝝎𝒔𝒉𝒊𝒇𝒕                         [Eq. 15] 

Here we have accounted for the magnetic fields produced locally by the electrical environment in 

𝐁𝒆𝒇𝒇, and the resultant frequency as 𝝎𝒔𝒉𝒊𝒇𝒕.  In this manner, we can see that the resultant 

frequency of the signal is no longer centered on the Larmor frequency as predicted by the 

Zeeman Hamiltonian. The frequency is shifted by a small amount either to a larger or smaller 

value relative to this frequency. This “shift” can be expressed as the quantity: 

𝜹 =
𝝎𝒕𝒐𝒕− 𝝎𝟎

𝝎𝟎
                                                     [Eq. 16] 

 The chemical shifts for a given electronic arrangement, that is for a known chemical 

structure or functional group tend to fall within a few Hz of the central frequency or Larmor 

frequency of the nuclei in question. Because the Larmor frequencies of common nuclei in the 

magnetic fields of several Tesla are in the radio frequency regime (MHz) these shifts are 

commonly expressed in parts per million (ppm) relative to the central frequency as given by Eq. 

16. The shifts of a particular functional group or chemical species is dependent on factors such as 

solvents, concentration and ambient temperature, but in general fall within a well-documented 

range. For referencing purposes, common solvents with very well studied temperature dependent 

shifts are used in conjunction with the material of interest in order to reference the shifts to a 

peak of known frequency, as in experiments there is usually some ambiguity in the exact strength 
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of the magnetic field and Larmor frequencies, as no true isolated spin can be observed. These 

shifts are tabulated and available both in extensive documentation and online resources. 

 A further element of note is in the excitation of these peaks relative to the applied pulse. 

The applied pulse is centralized to a “carrier frequency” of a spectrometer, whereby the central 

frequency is chosen to be exactly on the frequency of the peak of interest. This is done 

experimentally, with the frequency usually adjusted by some offset value from the true Larmor 

frequency of an isolated spin of that nucleus, 𝝎𝟎, due to its own internal structure. The 

subsequent peaks that are offset from this frequency, due to their chemical shifts, are therefore 

not centralized on the spectrum. The pulse being applied is not precisely at an isolated frequency, 

but in general has a finite width in the frequency domain inversely related to its time scale. 

Therefore the window of excitation for a given pulse generally covers a wide frequency range, 

and will excite shifted peaks. Typically in experiment, we do not worry if these peaks are 

properly centered, as the evolution of their amplitude with other quantities in a pulse sequence, 

as discussed below, are more revealing.  

 

Chapter 3: Experimental Details and Pulse Sequences 

 

 

3.1 Inversion Recovery 
 

 In order to measure dynamic quantities in NMR such as T2 and T1 or more difficult 

quantities such as ionic diffusion coefficients (D), a number of different pulse sequences can be 

employed to extract the relevant time evolution of an NMR signal with respect to that dynamic 

quantity. In the case of a measurement to find characteristic time T1 one can employ what is 
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known as an Inversion Recovery sequence, whereby the magnetization M0 is rotated 180° to 

oppose its original orientation along the 𝑧̂ axis. A period of time denoted by τ is then allowed to 

pass before a second pulse that rotates the magnetization by 90° is applied, which then aligns the 

magnetization along the acquisition axis. An intensity measurement (either of the resultant initial 

voltage of the FID or an integral of the spectra) can then be taken, as a function of the time 

allowed between pulses. This recovery curve can be described analytically by the expression: 

𝐌 = 𝐌𝟎(𝟏 − 𝟐𝒆
−𝝉

𝑻𝟏
⁄ )                        [Eq. 17] 

the plot of which can be seen in Fig. 5, along with a schematic of the pulse sequence.  

In practice, an inversion recovery curve is obtained with discrete values of tau arrayed at 

values along the curve that are dependent on the nuclei and material in question. Furthermore, 

different chemical sites can be isolated if the spectral peaks are distinguishable, and their 

individual recoveries can be obtained in a similar manner. This allows for the extraction of T1 

dynamics available to particular chemical structures. 

 There are cases where an inversion recovery sequence is not ideal for the extraction of T1. 

These cases are where T1 is particularly long, or a peak requires long pulse widths and power to 

achieve inversion. In these cases, the time scales of the total experiment will be very long, or in 

some cases the limit of available power will lead to longer pulses that can introduce unwanted 

dephasing or echo formation in the acquired signal. A method to combat these effects is to use a 

saturation recovery sequence, the details of which can be found in the literature [10,8]. An 

analogous technique can be used to extract T2 values, but is beyond the scope of this work. 
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Figure 5. A T1 Inversion Recovery, with accompanying schematic pulse sequence. 

 

3.2 Static Gradient Diffusometry 
 

 In electrochemical materials, we are particularly interested in the transport of charge in 

bulk systems. This mechanism is critical for materials that act as electrolytes in batteries, where 

the ion that is formed as a result of the redox reaction is moved in a material that is not 

electrically conductive, so that the work is done on the external circuit. It becomes necessary, in 

order to examine candidate materials, to look at the effective diffusion of these ions, and lithium 

ions are only one scenario where this is desired. Diffusion here refers to Brownian Diffusion 
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whereby assumptions that the system is experiencing no driving external forces, and no major 

chemical potential gradient. This diffusion is random in nature, and is driven purely by 

thermodynamic principles. 

This can effectively be measured by NMR techniques. Through the Nernst-Einstein 

equation given by Eq. 18 one can directly relate the self-diffusion coefficients to the ionic 

conductivity of a material. 

 𝛔 = 
𝐹2[𝐶]

𝑅𝑇
(𝑫+ + 𝑫−)                        [Eq. 18] 

Here 𝛔 is the ionic conductivity, F is given by Faraday’s Constant, R the gas constant, T the 

temperature and [C] a parameter that relates the valences of the ions and the number of ions per 

chemical unit. D± are the self-diffusion coefficients of the cation and anion, respectively.  

 From the measurement of the diffusion coefficient, one can further extract average 

molecular size via the Stokes-Einstein equation:  

𝐃± = 
𝑘𝑇

6𝜋𝜂𝑟
                                                     [Eq. 19] 

Here k is Boltzmann’s constant, 𝜂 is the dynamic viscosity of the liquid, and r the average radius. 

This expression encodes assumptions that the particles can be treated as spherical like, moving in 

a fluid dominated by laminar flow. Other dynamic fluid models can be used to relate diffusion 

coefficients to molecular information as well.   

 To extract the diffusion coefficient experimentally, NMR experiments known as Pulsed 

Field Gradient (PFG) techniques are typically used [8,10]. These techniques employ a probe that 

is cable of supplying a secondary magnetic field that is coaxial with the external magnetic field, 

but varies spatially along the axis. This is referred to as the magnetic field gradient, and it was 
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shown by Stejskal and Tanner in 1965 that with a spin-echo sequence (further details given 

below) and this gradient coil, one could encode the positions of nuclei in the material as a 

function of their positions relative to the gradient [13]. The resultant expression for the decay of 

the magnetization in the presence of a gradient field is given by:  

𝐌(𝐭) = 𝐌𝟎𝒆
[−

𝟐𝒕

𝑻𝟐
−𝑫𝜹𝟐𝒈𝟐𝜸𝟐(∆−𝟏

𝟑⁄ )]
                                    [Eq. 20] 

In this expression, δ is the length of the applied gradient pulse, g the gradient strength, γ the 

nuclear gyromagnetic ratio, Δ the diffusion time allowed between gradient pulses. In this form, 

the equation is measured using a spin-echo sequence in which the following occurs. The 

magnetization is rotated into the orthogonal plane via a 90° pulse, and then a spatial gradient is 

applied for some time δ. During this time the signal undergoes dephasing in the plane due to T2 

effects.  The gradient has the effect of changing the magnetic field at each point along the 

gradient axis, and therefore changing the frequency of the nuclei at each position. After some 

time, known as the diffusion time Δ, a 180° pulse is applied which rotates the now dephased 

spins in the orthogonal plane into the opposite half. These spins begin to rephase in the plane, 

when a spatial gradient in the opposite direction but of the same strength and duration are 

applied, the effect of which is to cancel out the effects of the first gradient. If this is successful, 

the original frequency offset of the first spatial gradient would be cancelled and the signal would 

just be returned as in a normal experiment. If the ions have undergone their Brownian Diffusion 

however, the offset will not be corrected as they have moved from their original positions and 

therefore the secondary gradient is not acting on the same nuclei in the same position. The result 

of this is an overall signal attenuation that is proportionate to one of two factors- the diffusion 
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time, or the strength of the magnetic gradient. It should be mentioned this displacement is Root 

Mean Square (RMS) displacement, not absolute, as it is only an averaged displacement relative 

to the gradient axis.  

 In PFG experiments the magnetic field gradient strength is changed, and the resultant 

attenuation of the magnetization as a function of this parameter is acquired. The overall curve 

follows a Gaussian type shape, and is only affected by T2 attenuation in the plane on the time 

scales of the entire pulse sequence. Due to limiting experimental effects such as the restrictions 

on gradient strength due to power requirements, small diffusion coefficients can be difficult to 

measure (small relative motion along the gradient axis). PFG probes also suffer from Eddy 

currents induced by the flux of magnetic fields in the surrounding probe housing, that can be 

received during signal acquisition and interfere with the signal of the sample. There are 

experimental techniques to combat these effects with various delays during the pulse sequence.   

 An alternative technique, which shall be focused on in this work, is the measurement of 

diffusion coefficients in a static magnetic field gradient, using the same formalism outlined 

briefly above, but with a variation of the parameter known as the diffusion time instead of the 

gradient strength. In the case of a constant magnetic field gradient with varying time for 

diffusion, the expression derived by Stejskal and Tanner is rewritten as:  

𝐌(𝛕) = 𝐌𝟎𝒆
−

𝟐𝝉

𝑻𝟐
−𝑫𝒈𝟐𝜸𝟐𝝉𝟑

                                        [Eq. 21] 

where now we consider a fixed field gradient strength and include the time allowed for diffusion 

in the variable τ. Note that the dependence on 𝝉𝟑 now involved arises from the considerations of 

the dephasing of a magnetization as the time of exposure to a gradient limits to infinite. 
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 In practice, we now have to consider the attenuation of signal due to T2 effects in addition 

to that caused by gradient. To achieve a static magnetic field gradient, the sample can be placed 

in the non-homogenous field below the central axis of a solenoid magnet, which has a permanent 

gradient that runs along the central axis. These gradients are generally a factor of ~10 larger than 

those produced by PFG gradient coils, for example in an 11T magnet, the peak gradient value 

was found to be 5.5kG/cm. This means that the second term in the exponential is dominant (this 

is scaled with the square of the gradient strength) and therefore with large gradients T2 

attenuation is sub leading. In order to acquire the magnetization intensity as a function of the 

diffusion time, the same pulse sequence mentioned above is employed, detailed in Fig. 6. and the 

same encoding-decoding mechanism is achieved. Magnetic field strength is calculated as a 

function of position using a gaussmeter (Lakeshore company), with measurements taken in cm 

increments. The gradient value is calibrated by using a sample of known diffusion coefficient, 

such as protons in water, and a reverse analysis is done to extract gradient strength. Attenuation 

is recorded as a function of discrete values of τ, which are arrayed depending on the observed 

amount of diffusion present in the sample. The only major difference is the absence of the 

gradient pulses in the sequence, and acquisition begins immediately after the second pulse.  

 
Figure 6. Spin echo pulse sequence used in diffusion measurements. 
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3.3 High Pressure NMR 
 

 Thermodynamic variables are important in the full mechanistic understanding of a 

complex system. Temperature, pressure and volume are critical quantities in understanding the 

behavior of materials in various environments, and make up the equation of state for any given 

system. From a thermodynamic formal standpoint, there are multiple variables that may be 

advantageous to view a particular system in, such as entropy or the notion of free energy, but 

intuitively these are not quantities we can associate with the majority of physical phenomena in 

our daily lives. From an experimental standpoint, there are a number of ways to efficiently 

change temperature in a sample, however this gives us only one degree of freedom to explore the 

thermodynamic properties of a system. Often, by increasing temperature in a closed system we 

also increase volume by expansivity, but also increase the average kinetic energy available to the 

constituents of the system. In providing this increased average energy, the dominance of certain 

statistically weighted processes becomes skewed- a key example is molecular diffusion, which 

greatly becomes more involved in dipole relaxation at higher temperatures due to increased 

molecular tumbling relative to their magnetic environment.  

 It is advantageous to study materials using multiple thermodynamic variables, and 

variable pressure studies provide a unique insight into volumetric dependencies without 

changing internal energies. Whereas the increase in volume due to thermal expansion is 

accompanied by an increase in average kinetic energy, the increase of pressure decouples the 

change in volume from the change in internal energy. This allows the probing of processes that 

are specifically dependent on things such as a decrease in the free volume available to a molecule 
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or functional group. The key dynamic quantity that can be studied in variable pressure NMR 

techniques is the activation volume:  

 𝚫𝐕 = −𝒌𝑻(
𝝏 𝐥𝐧𝜶

𝝏𝑷
)𝐓                                              [Eq. 22] 

where ΔV is the activation volume, in units of inverse volume, T is the temperature, P is the 

pressure, and α is the dynamic variable of interest. In NMR studies it is commonly the inverse of 

T1, known as the relaxation rate R1 =
1

𝑇1
, or the self-diffusion coefficient, D. This quantity 

expresses the dependence of a molecular process on the available free volume, and so is 

representative of the minimum free volume necessary for this process to occur in an analogous 

form to an activation energy, which describes the minimum energy necessary for a process.  

 To realize high pressure conditions in an NMR experiment, specialized equipment in the 

form of a probe designed to withstand hydraulic pressures while still performing the necessary 

electrical properties is needed. This probe is similar in construction of the electronics to other 

standard NMR probes, but possesses a specialized sample-housing chamber made of a copper-

beryllium alloy. This alloy is robust enough to withstand high pressures in a small volume that 

encapsulates the acquisition coil, the center of which is where samples are placed during 

experiment. The coil leads are then passed through a “plug” (that is impermeable to liquid) and 

allowed to reach the lower area of the probe where the RF circuitry is placed. This housing is 

then filled with hydraulic fluid via a small nozzle opening at the other end of the chamber. 

Pressure is typically applied using a perflourinated hydrocarbon liquid (Flourinert, 3M 

Company), which is pumped into the chamber with the use of a single-piston lever action 

hydraulic pump commercially available (Enerpac Company, an Actuant division) in ranges of [0-
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250] MPa. This liquid is adequate for all nuclei except for studies that wish to probe fluorine 

nuclei, in which case an equivalent viscosity conventional hydrocarbon can be substituted. 

Flourinert offers the key advantage of being chemically inert, and possesses a high thermal 

conductivity allowing for efficient cooling of the interior of the probe [14].  

 To pack samples in the coil without exposure to liquid contact, materials are packed 

hermetically in polyethylene bags of sub-mm thickness. The bags are sealed using an impulse 

sealer at low temperatures. Polyethylene films are amorphous at ambient temperatures and a 

wide range of pressures, and so effectively transmit pressure to the material of interest without 

Figure 7. From left to right: Flourinert reservoir, Hydaraulic pump assembly and plumbing, 

High pressure "plug" with diffusion coil, High pressure probe chamber, Chamber sealing nut 

with through-hole for coil leads, Mounting hardware to secure to magnet bore, Lower probe 

section containing RF wiring, Probe tuning capacitors, Examples of high pressure samples 

packed in polyethylene bags. 
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interference [15]. The high pressure chamber, being a copper alloy, is conductive electrically. 

This makes it subject to the induction of high Eddy currents in the present of strong time-

dependent magnetic flux, and so conventional PFG techniques for measuring diffusion are 

impossible. To account for possible induced currents during normal pulse sequences, an 

acquisition delay is present after the final pulse to allow time for the decay of these localized 

currents.  

 Several images representative of the high pressure probe and hydraulic assembly are 

given in Fig. 7. to provide a physical reference. All other facets of conventional NMR 

experiments, as detailed above, remain entirely valid for high pressure experiments. In the work 

discussed in subsequent sections, the dynamic quantity measured will be outlined in the 

discussion of that particular material system.  

 

3.4 Fast Field Cycling NMR 

 Another variation of conventional NMR experiments that has only been realized in 

experiment relatively recently is that of Fast Field Cycling (FFC) NMR. The frequency 

dependence of relaxation phenomena is understood through BPP formalism as described in 

discussion of relaxation phenomena in the previous section. Many interactions are detailed in 

analytical form in the relevant literature as well, but widespread experimental support for NMR 

spectrometers capable of varying frequency only became available in the early 2000’s [16-18].  

 This technique functions in an analogous manner to a simple one-pulse 

experiment at a static magnetic field, however in FFC experiments the strength of the magnetic 

field can be changed from very low fields to a maximum just below 1T in commercially 
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available instruments (Stellar Company, Italy). For 1H NMR, this corresponds to a maximum 

frequency around 40MHz. In order to provide the variable magnetic field strengths, a solenoid 

type electromagnet powered by a 400A three-phase power supply is used, with a finely tuned 

power supply control unit that can reproduce magnetic fields with precision. The magnet sits in a 

Flourinert bath, which is subsequently cooled via a water-based heat exchanger pump. Variable 

Temperature (VT) measurements are also commercially supported, with low temperatures 

achieved with a liquid nitrogen evaporator and high temperatures via an internal air-heating 

element. Samples in FFC measurements are packed in borosilicate 5mm radius NMR tubes.  

The majority of FFC measurements focus on T1, but experiments to measure T2 values are also 

available and supported in commercial units [16].  

 The experimental design can be described by now considering the strength of the external 

field as a function of time. In this case, the Larmor frequency as derived in Eq. 3 will vary with 

the strength of this field, during the course of the experiment. Initially, no magnetic field is 

experienced by the sample. At time t=0, a magnetic field referred to as the “relaxation” field is 

applied in the laboratory 𝒛̂ axis, resulting in a net magnetization growing along this direction, 

exponentially related to T1. After time τ has elapsed at this magnetic field strength, the external 

field is increased linearly to what is known as the “acquisition” or “detection” field. The purpose 

of this magnetic field is to be able to excite the nuclei with RF at a frequency within the optimal 

range for the probe. A 90° pulse is applied, and the amplitude of the magnetization resulting 

from this pulse in the orthogonal plane is measured instantaneously. The magnetic field is then 

switched off and the spins allowed to entropically equilibrate, after which the sequence is 
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repeated for a smaller value of τ resulting in a smaller amplitude of the magnetization, according 

to same recovery expression given in Eq. 10. This can of course be done from short τ to long τ 

depending on sample signal strength and the time of T1. After T1 is obtained for a given 

relaxation field strength, this sequence is repeated for a different value of the relaxation field, 

and therefore a different frequency. A schematic diagram of the magnetic field sequence during a 

single sequence can be found in Fig. 8.  

 

Figure 8.  Schematic of magnetic fields during FFC experiment. 

The number of fields swept can be chosen to best characterize dynamics in a specific 

system, and the entire process is software controlled via commercial units. Some limitations on 

the magnetic fields chosen arise due to the concentration of the chosen nuclei in the sample, as 

those with lower concentrations suffer from low Signal-to-Noise (S/N) at low magnetic fields 

due to noise from various ambient sources. This can be addressed using a pre-polarizing 

sequence, which applies a magnetic field for a fixed amount of time prior to the relaxation field. 

This has the effect of building up initial magnetization strength, to help distinguish signal from 
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noise, and is kept constant for all values of τ in the sequence. Furthermore, values of T1 can be 

very short in fast-relaxing systems, such as solids at low temperatures, and can approach the 

switching time (sw) involved in increasing the magnetic field from the relaxation field to the 

acquisition field. In typical experiments sw ~2ms and so T1 values that approach this limit cannot 

be considered.  

In FFC measurements, the relaxation profile given by the inverse of T1 (R1) as a function 

of frequency is acquired, and subsequently needs to be interpreted from a first-principals 

standpoint. As discussed in prior sections, T1 is dominated by dipolar interactions, which can be 

mediated through molecular dynamics that can be site specific in complex molecules. FFC 

allows for the frequency dependence of these interactions to be explored [16-18]. At varying 

temperature, certain interactions can be isolated as the principal component of the relaxation. 

One example is that of the low frequency, high temperature limit of the relaxation curves, which 

can almost entirely be attributed to molecular diffusion processes, and subsequently analyzed 

using a simple linear expression given by:  

𝐑𝟏(𝝎) = 𝐑𝟏(𝟎) − 𝑵𝒊 (
𝝁𝟎

𝟒𝝅
𝜸𝒊

𝟐ℏ)
𝟐

(
√𝟐+𝟖

𝟑𝟎
)(

𝝅

𝑫
)
𝟑

𝟐⁄ √𝝎                   [Eq. 23] 

which was analytically derived for relatively low viscosity ionic liquids by D. Kruk et al. [19]. 

Here R1 is a function of the applied magnetic field (frequency), 𝑵𝒊 is the number density of the 

nuclei denoted by index (i), 𝝁𝟎 the vacuum permeability, 𝜸 the gyromagnetic ratio of the nuclei 

studied, ℏ the reduced Planck constant and D the self-diffusion coefficient. Through this 

approach in the extreme limit of frequency, relaxation curves can in fact be used to derive self-

diffusion coefficients for species, with some initial knowledge of the chemical nature of the 
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moving species.  

The formalism behind the analysis of resultant relaxation profiles require careful 

discrimination between the interactions present in a system, and are generally in need of support 

from parameters acquired by other experimental means. These parameters may be the average 

interatomic distance between neighboring chemical sites or the viscosity of a bulk sample [16]. 

A number of higher order interactions can be accounted for in relaxometry, making it a robust 

technique for characterizing dynamics in complicated systems. 

 

Chapter 4: Fast Field Cycling Studies of BMIM TFSA 

 

 This work has been accepted in the Journal of The Electrochemical Society and was done 

in collaboration with Dr. Sophia Suarez of Brooklyn College, CUNY, Dr. James Wishart and Dr. 

Jasmine Hatcher of Brookhaven National Laboratory. First author on this work was Dr. Kartik 

Pilar, and the author of this thesis was a co-author, contributing to the section on FFC Studies 

in collaboration with Dr. Shen Lai.  

 

4.1 Introduction and Sample Preparation 

 

  Ionic Liquids (ILs) are systems of salts that are liquid at room temperatures, which have 

found application in a variety of fields, not least of which as non-volatile electrolyte solvents in 

lithium ion batteries [20,21]. They are desirable for a number of reasons, including: low vapor 

pressure, selective properties in the form of cation and anion structures, and thermal stability 

[22]. These properties make them good candidates for electrochemical systems, but need to be 

further understood on a molecular level in order to enhance performance. IL’s generally have 
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high viscosities, and consequentially low ionic conductivity values. In order to combat these 

drawbacks, investigations of the dynamics in IL systems reveal the effects of altering salt 

chemical structures. A full relevant discussion of the effects of altered chemistries can be seen in 

the well-established body of literature [22]. In attempts to understand the complicated dynamics 

of IL systems, techniques such as molecular dynamics simulations and Raman spectroscopy have 

been employed [23-25]. In this study, NMR characterization, specifically high pressure 

multinuclear studies, are presented to further elucidate molecular dynamics in the 1-butyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) species of IL, and several 

isotopologues. For the purpose of this thesis, this work will briefly outline the FFC studies done 

on the pure BMIM TFSA chemistry and its use in comparison to conventional PFG techniques.  

 Sample preparation was done at Brookhaven national laboratory, the details of which can 

be found entirely in the supplementary materials of the resulting publication [22]. For the 

purposes of FFC studies, BMIM TFSA IL was stored in an argon-filled glovebox to avoid 

ambient moisture contamination. After drying in a vacuum oven at low heat over approximately 

one day, samples were packed in the glovebox into 5mm FFC NMR tubes and sealed with 

Parafilm (Bemis Company).  

 

4.2 Experimental Details and Results 

 

 FFC measurements of 1H spin-lattice relaxation times T1 were carried out at frequencies 

ranging from 100kHz to 35MHz in 15 logarithmically spaced increments. These measurements 

correspond to the 1H sites on the BMIM cation in the salt. These T1 curves were collected in a 

temperature range of 263-333 K in increments of 5K. For frequencies below the threshold of 
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12MHz, a pre-polarizing magnetic field sequence was used, as detailed in a prior section, in 

order to combat low S/N. As detailed in the previous section on FFC experiments, relaxation 

phenomena for T1 primarily arise from dipolar interactions that are both intramolecular and 

intermolecular in nature [10,12]. Intramolecular interactions are typically much faster 

reorientation processes that involve bond angle fluctutations and conformal exchange of the 

molecule leading to local magnetic field interactions. Intermolecular interactions generally 

evolve from the molecular tumbling through a surrounding magnetic environment.  

The relaxation curves can be described via spectral density functions, which arise from 

the Fourier Transform (FT) of the autocorrelation functions that describe specific molecular 

processes. The time scale of these processes is proportionate to the correlation time, which can 

be found via T1 minimum as a function of frequency. In general, the correlation time associated 

with intermolecular processes tends to be shorter than that associated with intermolecular 

processes [10]. Fig. 9 shows 1H relaxation rates R1 as a function of Larmor frequency, ω. The 

qualitative trend is a decrease in R1 with increasing frequency, corresponding to an increase in 

T1. This can by intuitively understood as a reflection of the increased equilibrium conditions of 

the bulk sample with the external field. At higher magnetic fields, the local magnetic 

environment of the system is increasingly coupled or well ordered relative to the external field, 

making local fluctuations in magnetic environments less powerful as a relaxation pathway for the 

magnetization. We also see a general decrease in R1 with temperature, which is a reflection of the 

higher average kinetic energy available to the bulk system. As temperature increases, diffusion 

becomes the dominant interaction in dipolar coupling.  As a result, the local magnetic fields are 
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averaged out by the nature of this stochastic process, increasing time that relaxation takes to 

occur.  

 In the low frequency and high temperature limit the diffusion coefficient for 

molecule with the probed nuclei can be represented by Eq. 23, and is here used to extract D 

values of the 1H carrying BMIM cation. The low frequency upper limit was taken to be 1.5MHz 

for all temperatures, despite higher temperatures remaining linear over the entire frequency 

range. The results of this calculation are presented here in Fig. 10. A general increase in the 

value of D with temperature is demonstrated, as expected classically. Good agreement is found 

with D values for BMIM+ measured using PFG techniques, supporting the argument that this low 

frequency limit can be used to extract self-diffusion coefficients. Eq. 23 is presented with some 

Figure 9. 1H Relaxation rates R1 at selected Larmor frequencies for BMIM TFSA. 



www.manaraa.com

Nuclear Magnetic Resonance Characterization of Dynamics in Novel Electrochemical Materials 

 

 

 36 

simplifications of the spectral density functions at low magnetic field strengths, namely that the 

faster reorientational processes also represented in the spectral density functions are sub-leading 

in the expression for relaxation in this limit. This is qualitatively supported by notion that low 

frequency values are coordinated with processes with longer average correlation times, such as 

translational motion. The expression also attributes all translational dipolar coupling to 

homonuclear interactions only- that is only the 1H near neighbor interaction is being considered 

[19]. This is a valid assumption considering protons dominate the number density in the 

expression, NH, and is demonstrated by the agreement show in Fig. 10. 

 

 

4.3 Conclusions 

 

 BMIM TFSA isotopologues have been characterized via HP NMR and FFC NMR 

Figure 10. 1H Self-diffusion coefficients calculated as a function of temperature from FFC with 

those found via PFG. 
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techniques. For the purposes of this thesis, FFC studies were focused on, and their analysis with 

respect to simplifications of the BPP formalism behind relaxation phenomena. This analysis 

demonstrated the validity of assumptions taken in the dominance of homonuclear dipolar 

coupling in comparison to the heteronuclear coupling, and the assignment of the low frequency 

limit to translational behavior. This analysis is supported by the agreement of PFG and FFC 

diffusion results for the BMIM+ cation. Table 1, containing R1 data measured via FFC at varying 

temperature, is available in appendix A. Further details of the HP studies and NMR 

characterization of IL dynamics can be found in the published article [22]. 

 

Chapter 5: High pressure Diffusometry of Novel Polymer Electrolyte 

 

 This work was done in collaboration with Ionic Material Company, Woburn, 

Massachusetts on a novel material of proprietary nature. The HP diffusion studies presented 

here are unpublished as of the time of writing this thesis, and were done by this author at Hunter 

College. Additional NMR material will subsequently be found in a publication in the near future.   

5.1 Introduction and Sample Preparation 

  

 As discussed in the introductory section on battery chemistries, specifically those of 

rechargeable secondary batteries, the common problem with commercially available lithium ion 

batteries lays within the flammable electrolyte solvent material. Solid state alternatives to 

electrolyte materials have been a prominent area of research for decades, both in ceramic and 

amorphous polymer type materials. Although advances in this research have been great over the 

past few decades, performance of these solid-state alternatives remains subpar for widespread 

application [3,4]. Ceramic based electrolyte materials suffer from low conductivity at room 
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temperature, as well as limited specific capacity [3]. Furthermore, they have shown to not be 

impervious to dendrite formation problems as previously believed on a large scale [4]. Polymer 

electrolytes are an area of great interest for their many beneficial characteristics. Amorphous 

polymers are solids at a wide range of temperatures and can be tailored in chemical structures 

along the polymer backbone and polar end groups, as well as flexibility in molecular weight. 

Solid polymers are structurally ideal electrolytes as they can both solvate the polar lithium salts 

and also act as the porous separator, increasing energy density in a cell. Since the mid-90’s, 

Poly(Ethylene)-Oxide based polymer electrolytes have been the focus of much research, mainly 

for its robust mechanical properties and widespread availability. PEO based systems have 

however remained relatively unviable commercial because of their low conductivity at ambient 

conditions (less than 0.1 mS/cm) [26].  

 Ionic Materials Inc. (IM) has recently developed a novel solid polymer electrolyte 

material that shows profoundly impressive electrochemical properties at ambient conditions, and 

this thesis presents here a part of a larger body of work intended to characterize and understand 

this material. In this work a brief discussion of HP-NMR ion self-diffusion coefficients for the 

IM polymer is presented.  

 The IM polymer electrolyte material was supplied by Ionic Materials, Woburn, 

Massachusetts and stored in an argon glovebox to avoid moisture contamination. IM resident 

researchers fabricated all materials relevant to this discussion. The samples contain, in varying 

concentrations, lithium salts. The lithium salt responsible for the 7Li ions studied in this work is 

Lithium bis(trifluoromethanesulfonyl)imide (TFSI). Due to the highly proprietary nature of this 
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material, full details of synthesis and material composition will not be presented here.  

 Conventional PEO based polymer electrolytes are believed to transfer lithium ions within 

the polymer matrix via a “charge hopping” mechanism. This mechanism is believed to be a 

movement of the ions along the ether oxygen groups present along PEO backbones [26]. Such a 

motion is heavily dependent on the segmental fluctuations in the polymer, as the ether oxygens 

need to be in the proper configuration for the hopping to occur. This mechanism, has 

demonstrated in a wide range of PEO samples to be inefficient at conducting ions, and at higher 

pressures is likely heavily suppressed. The novel IM polymer material is believed to function in a 

method independent of the polymer segmental motion, via a charge-hopping mechanism that 

utilizes charge defect sites along the polymer backbones, which is decoupled from the polymer 

segmental motion. Ionic diffusion measurements at room temperature indicate that this 

mechanism is far more robust and efficient that the hopping in PEO based systems, and is 

groundbreaking in performance for polymer electrolytes [26]. HP-NMR studies are intended to 

demonstrate this decoupling.  

 

5.2 Experimental Details and Results 

 

 IM Polymer material was packed into polyethylene HP-NMR sample bags, and impulse 

sealed under low heat in an argon glovebox to avoid ambient moisture content. Samples were 

rectangular and as thin as experimentally possible; roughly 10mm by 6mm square and 1mm 

thickness. These bags were then placed in a “flat” induction coil of the HP-NMR probe, to allow 

for only a thin cross section to be exposed to a field gradient. After assembly, the probe was 

placed in the lower part of an 11T (Oxford company) (500MHz) superconducting magnet with a 
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Varian spectrometer. The position was measured using a gaussmeter as detailed in the 

experimental section above, and a screw-type jack is used to raise or lower the probe position in 

sub-mm increments. Position and gradient strength were calibrated using a reference sample of 

lithium chloride (LiCl) in water. Diffusion of 7Li in this reference was measured using PFG in a 

7T (300MHz) magnet and Varian Spectrometer, using a DOTY z-gradient diffusion probe. 

Calibrated gradient value is 5.94kG/cm at the position used (coil height was approximately 17cm 

relative to the bottom of the magnet).  

Figure 11. 7Li D values for IM Rev 2.0 as a function of applied pressure. 

A spin echo pulse sequence as detailed in Fig. 6 was employed to measure 7Li self-

diffusion coefficients. Acquisition was done at room temperature (296.9K) for the entire pressure 

range. D values of 7Li are reported in Fig. 11 for IM material Rev 2.0. Due to the lower magnetic 
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field experienced by the sample in the fringe of the magnet and the static gradient present, S/N 

suffered and signal averaging had to be done over long time periods. Attenuation was measured 

due to diffusion according to Eq. 21, and subsequently analyzed using the time domain intensity 

of the echo. This was done to counteract the line width limitations of the Varian spectrometer, 

and avoid interference from post-processing audio filters. Data fitting was done in MatLab, using 

a least-squares (LS) regression analysis, and demonstrate less than 5% statistical deviation from 

fits.   

 

5.3 Conclusions 

 The values of D collected demonstrate a generally decreasing diffusion coefficient with 

increasing applied pressure. This is generally expected as restricting volumetric freedom of the 

sample is expected to reduce translational freedom of the 7Li ions. This trend however exhibits a 

surprisingly small dependence on pressure for the IM polymer in comparison to expected 

behavior for conventional PEO type electrolytes. The value of D does not decrease by an order 

of magnitude over the entire applied range, and in fact saturates at high pressures to a lower 

limit. This is indicative of low coupling of the ion diffusion mechanism to the polymer segmental 

motion, as increasing pressure restricts these movements effectively. IM polymer Rev 2.0 is 

therefore believed to possess a unique and effective diffusion mechanism. The value of ambient 

pressure diffusion, D = 2.2E-11m2/s is astoundingly high in comparison to other polymer based 

electrolyte systems [26]. Future addendum to this work will hopefully include measurements of 

the self-diffusion coefficient at these pressures for a conventional PEO based system in the 

absence of co-solvents, although such a system has yet to be synthesized for study. 
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Chapter 6: High Pressure Relaxation of Glycerol-Based Eutectic Solvents 

 

 The Department of Energy Office of Science, through the Case Western University 

Breakthrough Electrolytes for Energy Storage (BEES) program, funded this work. This author is 

responsible for the HP studies of the system, while Dr. Carla Fraenza and Sahana 

Bhattacharyya at Hunter College are carrying out FFC characterization. Here only the HP work 

completed so far shall be discussed, within the present limitations of the experiment. 

6.1 Introduction and Sample Preparation 

  

 Deep Eutectic Solvents (DESs) are a class of solvents with diverse applications that 

provide an alternative to conventional IL chemistries. They are of great interest in many 

electrochemical applications, including in secondary battery electrolyte chemistries. Eutectic 

refers to the varying concentrations of a constituent salt to change the effective physical 

properties (such as melting point) of the mixture. While IL systems can also form eutectic 

solvents by mixing metal halides with organic salts, the relatively high cost of ILs stirs interest in 

alternative eutectic systems [28]. An alternative chemistry of a eutectic solvent is to combine a 

polar salt with a hydrogen bond donor, which coordinates with the anion of the salt [27]. In this 

manner, the physical characteristics of the mixture are tunable similar to IL formed eutectic 

solvents, but in general the substances used as hydrogen bond donors are far more inexpensive 

and also ecologically sustainable. Glycerol has become a popular choice for its well-documented 

hydrogen bonded network properties, and widespread availability. A popular ammonium based 

salt for eutectic applications, and the salt used in this study, is hydroxyethyltrimethylammonium 

(choline) chloride.  
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 In this study, deuterated glycerol (glycerol-d8) in which the hydrogen is replaced with 

deuterium (2H), an isotope of hydrogen, is mixed in varying concentrations with choline 

chloride. Deuterium behaves identically to hydrogen in chemical structures, only altered by its 

effective mass. Using this isotopologue of glycerol, NMR studies can selectively study the 

protons present in choline chloride without background from those present in pure glycerol. 

Likewise, deuterium (I=1) can be selected in NMR studies to study glycerol behavior. Samples 

of 33% Molar concentration choline chloride (ChCl) mixtures with glycerol-d8 were created at 

Hunter College by Dr. Carla Fraenza and Sahana Bhattacharyya by solvation in a gentle heat 

bath. Samples were then pipetted into polyethylene HP-NMR bags cylindrical in shape, and the 

HP-NMR probe reassembled around the sample. Commercially available pure glycerol and 

glycerol-d8 were packed in HP bags in an argon glovebox. 

 

6.2 Experimental Details and Results 

 

HP measurements were done at 11T (500MHz) in the homogenous field, at room 

temperature (296.5K). Measurements were also done for pure non-deuterated glycerol at the 

same pressures. Both 1H and 2H studies were conducted for all materials, with the HP-NMR 

probe retuned to the correct Larmor frequency between measurements by switching capacitors. 

T1 values were measured using an inversion recovery sequence as demonstrated in Fig. 5 with 

pressures of [0-240]MPa in increments of 20MPa. All inversion recovery curves were fit in 

MatLab using a LS regression analysis, and errors are for all curves <4% deviation from average 

value. Figures 12-14 detail T1 as a function of pressure for all systems.  
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Figure 12. 1H Relaxation for pure glycerol at varying pressure. 

Figure 13. 2H Relaxation for Glycerol-d8, with and without Choline Chloride salt at varying pressure. 
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6.3 Conclusions 

 

 Although HP-NMR data is presented here for several systems, this study is not yet 

experimentally complete. Analysis of FFC measurements will be supplemented by the HP-NMR 

data shown here and will be subsequently submitted for publication in the near future. Therefore, 

only a brief discussion of the behavior revealed by these HP-NMR results will be given here, and 

the reader is encouraged to see the future publication on the full characterization of these 

materials from a multi-faceted NMR study.  

 Fig. 12 demonstrates a generally increasing of 1H T1 with pressure in pure glycerol, 

indicating that the relaxation pathways mediated through hydrogen dipolar coupling in the 

Figure 14. 1H Relaxation for Choline Chloride 33%M mixture in Glycerol-d8, at varying pressure. 
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glycerol network are restricted at higher pressures. This is also seen in the 2H T1 values for pure 

glycerol-d8, with roughly the same reasoning provided. The 2H T1 studies of glycerol-d8 in the 

presence choline chloride reveal a completely different trend, whereby T1 decreases drastically at 

higher pressures and appears to saturate in the region >150MPa. This can be interpreted as the 

polar salt disrupting the hydrogen-bonding network of glycerol, allowing for coupling with the 

salt to mediate relaxation phenomena. As pressure increases and the intermolecular distances 

reduce, the coupling between the two chemical species becomes stronger, producing a smaller 

relaxation time. More careful analysis of FFC relaxation data, particularly in temperature 

extremes, may validate this conclusion, and reveal sub-leading interactions present in the system. 

Fig. 14 demonstrates a generally low dependence of 1H relaxation for choline cations on 

pressure, perhaps an indication that the polar salt is not heavily dependent on translational 

motion for its dipolar relaxation modes.  

Effectively, choline chloride has been shown through HP-NMR relaxation studies to 

significantly disrupt the hydrogen-bonded network of glycerol. The effects of the polar salt on 

physical properties of the system (such as freezing point) are not presented here, but 

concentration effects on solvent properties will be detailed in later work. High pressure regimes 

reveal a low dependence of salt relaxation times on intermolecular distances, which requires 

further study, perhaps in the form of PFG diffusion studies. The 2H relaxation data presented for 

both the pure glycerol-d8 and choline chloride mixture demonstrate significant contrasting 

effects of dipolar interactions with the hydrogen network of glycerol.  
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Appendix A 

 
Table 1. 1H R1 values measured via FFC for various temperatures and frequencies. Values are in s-1 

  Temperature (K) 

Field (MHz) 
263 268 273 278 283 288 293 298 303 308 313 318 323 328 333 

35 
9.33 9.09 8.10 8.07 8.34 7.57 5.60 3.69 3.12 2.84 2.53 2.27 2.05 1.88 1.07 

23.04 
15.54 14.97 13.99 12.68 10.96 9.36 7.27 3.99 3.47 3.03 2.65 2.36 2.23 1.92 1.06 

15.16 
21.81 20.67 19.07 16.35 13.97 11.22 8.96 4.33 3.71 3.16 2.79 2.37 2.17 1.95 1.09 

9.98 
25.91 25.65 22.42 18.90 15.39 13.05 10.21 5.06 4.31 3.68 3.14 2.95 2.57 2.29 1.37 

6.56 
33.16 30.99 26.81 22.16 17.75 14.46 11.35 5.19 4.45 3.76 3.18 2.86 2.44 2.30 1.33 

4.32 
38.64 35.07 30.93 24.44 19.40 15.41 12.12 5.23 4.48 3.83 3.28 2.87 2.54 2.24 1.27 

2.84 
44.49 38.74 34.50 26.44 20.58 16.44 12.39 5.32 4.56 3.85 3.33 2.90 2.55 2.22 1.26 

1.87 
48.62 41.64 36.58 27.94 21.62 17.02 13.14 5.46 4.57 3.95 3.35 2.87 2.51 2.23 1.25 

1.23 
50.93 45.16 38.44 28.96 22.59 17.20 13.39 5.42 4.58 3.92 3.30 2.86 2.48 2.26 1.26 

0.81 
54.10 46.72 40.42 29.85 23.20 17.81 13.62 5.55 4.64 3.86 3.34 2.93 2.52 2.25 1.25 

0.53 
56.61 48.59 41.41 30.97 23.82 18.47 14.11 5.49 4.61 3.95 3.38 2.90 2.48 2.22 1.25 

0.35 
58.52 49.55 43.46 31.90 23.83 18.65 14.31 5.59 4.68 3.92 3.41 2.90 2.55 2.23 1.26 

0.23 
59.88 49.50 44.73 32.26 24.80 18.60 14.39 5.54 4.65 3.97 3.32 2.93 2.56 2.27 1.26 

0.15 
61.81 51.19 44.98 32.38 24.24 18.84 14.61 5.58 4.69 3.92 3.32 2.93 2.55 2.25 1.26 

0.1 
62.65 51.79 45.40 33.10 25.25 18.98 14.69 5.77 4.81 4.01 3.39 2.97 2.59 2.28 1.29 
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